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Abstract. In connection with the controversial question about the interband matrix elements 
of a stair-function potential in a crystal, we show analytically that they are non-vanishing, in 
general, for an arbitrary band model for both an infinite and a finite crystal. This is in accord 
with numerical studies of specialised models, but in contradiction to other analytical claims, 
which are analysed in some detail. The connection to the phenomena of Stark ladders and 
Zener tunnelling is discussed. 

1. Introduction 

The motion of an electron in a periodic potential and a uniform electric field continues 
to be a topic of considerable current interest and controversy [l-111. The existence and 
nature of the energy Stark ladders [12] and the possibility of Zener tunnelling [13] 
across the energy bands have been investigated by analytical and numerical mewthods 

In many numerical investigations of these questions [ l ,  7, 16, 171 the effect of the 
electric field was approximated, for numerical convenience, by a stair-function potential 
which increases by equal steps over each unit cell or a submultiple of the unit cell. Such 
a model has real significance, because the electrostatic potential of a constant electric 
field can be written as a sum of a periodic part with the period of the crystal-the 
sawtooth-function potential for a one-dimensional crystal-and the stair-function poten- 
tial. The periodic part alters the shape of the periodic potential of the crystal in each unit 
cell and it can thus define electric-field dependent energy bands, while the stair-function 
potential determines the motion of the electron in these new bands. 

Such a splitting was considered analytically recently [2-51 and it was claimed that for 
both infinite and finite crystals the stair-function potential has no interband matrix 
elements. A similar claim was published earlier [9] on the basis of some qualitative 
arguments and a conjecture based on a highly singular model of a periodic potential. 
This important claim has as a consequence the existence of an exact Stark energy ladder 
for each electric-field-dependent energy band, and the description of Zener tunnelling 
as due to the effects solely of the sawtooth-function of the electric-field potential. 

In contrast, numerical studies [l, 7,16,17] have demonstrated that the stair-function 
potential has non-vanishing interband matrix elements. In the most recent such study 
[ l ] ,  a model of two tight-binding energy bands was considered in the presence of a stair- 
function potential. By an interesting and careful examination of the eigenfunctions, the 
conclusion was reached that the stair-function potential has definitely non-vanishing 
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interband matrix elements, and the resultant Zener tunnelling was discussed and esti- 
mated. In confronting the recent analytical results [5] claiming the contrary conclusion, 
the authors of [ l ]  stated that there is an error in [5] and suggested the location of the 
mistake. 

In this paper we present an analytical study of the same question €or an arbitrary 
multiband model. We evaluate the interband matrix elements of the stair-function in 
terms of the values of the Bloch wavefunctions and their derivatives at the edges of the 
unit cell, for both an infinite and a finite crystal. These expressions show that, in general, 
the interband matrix elements are different from zero, in agreement with the numerical 
studies. Furthermore, they provide a new way for evaluating their magnitude. An 
examination of earlier theories [2, 3, 5 ,  91 claiming the opposite result is given in some 
detail. Finally we discuss the questions of Stark energy ladders and Zener tunnelling on 
the basis of these findings. 

2. Stair-function potential in a crystal 

We consider, as in [ 1-5,7-11], one electron in a one-dimensional periodic potential V(x) 
with period a ,  i.e. V(x + a) = V(x), and a stair-function potential eES(x), which 
increases by eEa on each period a of the crystal. The periodic potential V(x) is arbitrary, 
and it may be taken to include the periodic sawtooth-function of the electric field 
potential eEx [5]. We shall assume, however, V(x) to be finite everywhere, so that the 
energy eigenfunctions, given by 

wherep = (l/i)(d/dx) is the momentum operator, are continuous with continuous first 
derivatives, and such that the energy spectrum can be organised into bands &,k, with n 
denoting the band index and k the Bloch wavenumber. In (1) qnk(x) are the Bloch 
functions 

We write the stair-function S(x) in the form 

where m = 0, 21, +-2, , . , We are interested in the matrix elements of S(x) in the Bloch 
representation ( 2 ) .  We consider the cases of an infinite and a finite crystal separately, as 
the arguments differ. 

2.1. Infinite crystal 
In this case the wavenumber k is a continuous variable within the Brillouin zone 
( - n / a ,  n/a). The normalisation condition 

Hqnk(x) ( p 2 / 2 m  + V(x>)qnk(X) = Enkqnk(X) (1) 

Vnk(X) = elkxUnk(X) Unk(X + a)  = Unk(X). ( 2 )  

S(x) = ma (3) for ma < x < (m + 1)a 

+" 
(nkln'k') = q ~ k ( x ) ~ n n ' k , ( ~ )  dx  = dnnJ6(k - k ' )  (4) 1, 

leads, through a cell-by-cell integration, to the orthonormalisation condition 

( v n k I I j f n ' k ) =  (4&,%) = jOU Gk(X)Un,k(X) dx  = ( a / 2 n ) L  ( 5 )  

where we made use of the relation 
cs 

( 2 n / a ) d ( k  - k ' ) .  (6) e-i(k-k')am = 
m=-cc 

For the matrix elements of S(x) we find, again by a cell-by-cell integration, 
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-m 
J --o: 

d6(k - k ' )  2 n  a 
= i  - (qnk lqntkJ) = i a,,,,, - 6(k  - k ' )  + 6 ( k  - k')a,,,  ( k )  ( 7 )  d k  a dk 

where 

ann,(k) = (2Jc/a)(lilnk/i(a/ak)Wn,k) 

= X n n ,  ( k )  - x n n ,  ( k )  (8b) 

Xn,,(k) = (Wa)(unk Ii(W>.n,k) (9a) 

X n n n ' ( k )  = (2Jc/a)(unk I x Iund (9b) 
In arriving at these expressions we made use of equation (5) and the usual properties of 
the delta-function 6 ( k  - k' )  valid for integrations over k' .  Equations (8-9) for a,,,(k) 
are in accord with the fact that the stair-function S(x) can be considered as the difference 
between the function x (from - w  to w), with interband matrix elements Xnnt(k) ,  and 
the periodic sawtooth-function defined as x within the central unit cell (0, a) ,  with 
interband elements xnn,(k) .  

We now evaluate a,,,(k) in terms of the values of unk(x) and its derivatives at the end 
points of the central unit cell (0, a) ,  on the basis of the Schrodinger equation that 
determines unk(x).  From (1) we have the usual equation defining unk(x) within the unit 
cell (0, a)  

H(k)unk(x) =[(1/2m)(p + k>2 + V ( X > I 4 X >  = E n k U , k ( X )  (10) 
with the boundary condition of periodicity unk(x + a)  = u n k ( x ) ,  as in (2). We now note 
first that, writing (10) with the use of (5) in the form 

( 2 n / a ) ( u n k  I H ( k )  I u , ' k )  = & n k  (11) 
differentiating with respect to k and observing that H ( k )  is Hermitian with respect to 
u,k, u,!k over the interval (0, a) due to the periodicity of U,&) and its derivatives with 
respect to x and k ,  we get 

(l/m)(pnn'(k) + k 6 n n ' )  = ( d E , k / a k ) 6 n n '  +i(Enk - E n ' k ) X n n ' ( k ) *  (12) 

pnn,(k) = (2n/a)(unk IPI%k) (13) 

( P  + k ) /m  = i[H(k), XI (14) 

Here we have put 

and made use of (sa) and dH(k) /dk  = ( p  + k ) / m .  On the other hand we note that 

and upon evaluating its matrix elements by integration by parts (as H ( k )  is not Hermitian 
with respect to unk(x), xuntk(x)  over the interval (0, a) ) ,  we have 

( l /m)(p,nJ(k)  + k 6 , , , )  = i(Enk - E , , ~ ) x , , ~ ( ~ )  - 2 n i  W,, . (k ,  a)  (15) 

where 

Wnn,(k, x )  = (1/2m)(u;k:;,x)au,,k(x)/ax - au;k(x) /ax U , , k ( X )  

+ 2 i k ~ , * ~ ( x ) u , , ~ ( x ) )  (16) 
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using (96). Comparing now (12)  and (15) and recalling the definition (8) of o,, ,(k),  we 
have for the interband matrix elements n’ # n 

o,,t(k) = - 2JGW,,,(k, M E n ,  - E , % ) .  (17) 

Clearly this method does not determine o,,(k).  
The quantity W,lnr(k,  x), (16), iseasily seen to be the (modified) Wronskianfor u,,(x), 

u,,,(x), appropriate to the differential equation (lo), and clearly satisfies the differential 
equation 

(a/ax)w,,& X I  = (E , ,  - E , % ) ~ L k ( X ) ~ , J k ( X ) .  (18) 

For any periodic potential V(x) without infinite discontinuities, we have W,,,(k,  x + a)  = 
W,,.(k, x) due to the continuity of au,,(x)/dx. This property of W,,,(k,  x) along with 
(18) prove the orthogonality condition (5). For the intraband elements we have from 
(18) that 

These have physical significance, since from (12)  and (15) we have 

-2ni W,,(k,  a )  = a E , , / d k  = ( l / m ) ( p n n ( k )  + k ) .  (20) 

According to (17), a,, ,(k) depends on the value of the Wronskian at the end points 
of the unit cell, W,,,(k, a) = W,,,(k, 0). From (16) and (18) for W,,,(k,  x) we see that 
there is no reason for it to vanish at the edges of the cell for all n,n’(#n) and an arbitrary 
k .  Furthermore, we note that for a fixed periodic potential, W,,,(k,  a)  depends on the 
choice of the unit cell. This is obvious from the definition of o,,,(k), ( s a ) ,  since the first 
term X,,,(k) is clearly independent of, while the second term x,, ,(k) obviously depends 
on the location of (0, a) with respect to the periodic potential. That is, if the unit cell is 
taken to be (xo, xo + a) ,  then a,,,(k) W,, ,(k,  xo). Thus, since it is clear from (16) and 
(18) that W,,<(k, x) does not vanish everywhere on thex-axis, a,, ,(k) # 0 (n’ # n)  for an 
arbitrary unit cell. If, however, the periodic potential that determines the band structure 
is chosen to include the sawtooth-function part of x, as in [2-51, this argument may be 
objected to. However, no argument has been presented that claims the vanishing of 
o,,.(k) specifically for such periodic potential, in view of the fact that the unperturbed 
crystal is described by an arbitrary periodic potential to begin with. 

We can demonstrate some of these points explicitly for the extreme model of a 
periodic potential consisting of infinite potential walls at a distance a apart, i.e. 

x # m a  ( m  = 0 ,  i l ,  t 2 , .  . . )  
V(X) = ro 

\ I  

I cc  x = ma. 

The eigenfunctions and eigenvalues are 

qnk(x)  = eikXunk(x) = (l/V/n) sin(nnx/a) 

&,k = (1/2m)(nn/a>* n = 1 , 2 , 3  , . . . .  (22) 

(0 < x < a)  

Then, by direct evaluation of (sa) we have o,,,(k) = 0. Similarly, from expressions (17) 
and (16), we have also o,,,(k) = 0, while (20) yields a&,,/dk = 0, in accord with (22). 
We should note that although expressions (17) and (20) were derived for a finite V(x)  
with continuous au,,(x)/ax, etc, they also hold true for this case because unk(0) = 
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unk(a) = 0 as it can be easily checked [18].  But, if we now displace the unit cell (0, U )  so 
that 

the eigenfunctions are 

(x = a /2 )  

with same, of course, eigenvalues Erik = (1/2)(nn/a)’ (n  = 1, 2 ,  3 , .  . .). Now by direct 
evaluation of ( s a )  or by use of expression (17) ,  we find 

2 (25 1 2 a,,,(k) = 2 a / n  n ( n c o s y s i n - - n ’ s i n - c o s - -  nn n’n 
2 

which is non-vanishing in general. 

equal steps (a/.) within each unit cell, i.e. 
Often one considers [9 ,  161 a stair-function potential that has an integral number of 

s( ” ) (x )  = m ( a / v )  for m(a/v)  < x < (m + l ) ( a / v )  (26) 

where v = 1 , 2 , 3 ,  . . . and m = 0, t 1 ,  t 2 ,  . . . , while the period of V ( x )  is again a. For 
its matrix elements we find 

This quantity is clearly non-vanishing, and since S(”)(x)  + x as v -+ = (definitely for the 
integral (28 ) ) ,  we get 

which is the well-known interband matrix element of x ,  as we should. 
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2.2. Finite crystal 

We consider now a finite crystal consisting of N unit cells in the basic domain (0, Nu). 
The Bloch functions qnk(X) are as in (2), except that now the Bloch wavenumber k is 
discrete assuming the N values 

For such values we have that ?.pa&) is periodic of the basic domain Nu,  while the 
orthonormalisation conditions (4), (5) become now 

k = (2n/Na)s ~ = O , l , 2 , .  . . , N -  1. (30) 

(nkln'k') E q;k(X)yn,k,(X) dX = 8 n n r 8 k k '  (31) JoNa 
and 

(qnklqn'k) = (unk/un'k) E u:k(X)un'k(X) dx = (1/N)8nnr. (32) joa 

(nklSln'k')= Jo q&(X)s(X)qn,k, (X) dx  = E ma e-i(k-k')ma 1 (qnkhn'k'). 
( m = o  

The stair-function S(X) is given, as before, by (3) except now m = 0, I, 2, .  . . N - 1. We 
thus find for the matrix elements 

N - l  Na 

(33) 

In order to proceed further in analogy to the case of the infinite crystal, we introduce 
an operation with respect to the discrete k ,  (30), that is in some ways analogous to the 
differentiation d / d k  in the case of a continuous k .  Every function of the N ks is viewed 
as a N-dimensional vector in a space spanned by the complete set of the N orthonormal 
vectors 

e i k r a / v N  (r = 0 , 1 , 2 , .  . . , N - 1) 
such that 

N -  1 

(1,") 2 ei(k-k')ra = kk' (34a) 

( 1 / ~ )  elk(r-rOa = 8 rr' (34b) 

r=O 

k 

where Ck goes over the N values of k indicated in (30). Thus, for any such function Ak 
we have 

N- 1 

Ak = eikraA(r) (35a) 
r = O  

We now define the operation a k  on the basis of the definition (35a), namely 
N-1 

dkAk = x irae'k'a A(r). (36) 
r=O 

It is easy to verify that d k  has the same properties as the ordinary differentiation a /dk  
for functions of the continuous k for sums and products of functions 

dk(/ZAk + PBk) = AdkAk + PdkBk (37a) 
ak(AkBk) =AkdkBk + (dkAk)Bk. (37b) 

In addition we note the important property 
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akAk = 0 
k 

which follows from (36) and (34b). 

functions, i.e. 
Now the components of the Bloch wavefunction Ijlnk(x) are the well-known Wannier 

From the orthonormality (31) of the Vnks, we obtain for the Wannier functions 

w,* (x - ar)w,,(x - ar’) dx = (1/N)8,,,drr,. (40) loNa 
Such a relation is possible for the w,(x - ar)s, because the w,(x)s have the periodicity 
of the basic domain Na, as Vnk(x)s do, as it follows from their definition (39) and (35b). 
From (39) we note that the component representation of the periodic part of the Bloch 
wavefunction U,&), namely 

N - 1  

unk(x )  = e-Ik(X-ar) w,(x - ar) (41) 
r=O 

has the important feature that 
N -  1 

a k u n k ( x )  = - i (x - ar) eik(x-ar) w, (x  - ar)  
r = O  

is notperiodicinx, as it can be easily ascertained, in contrast to dunk(x)/akfor the infinite 
crystal. 

With these observations we rewrite (33) in the form 

(nklSln’k’) = - i N(a~ , ,ak ,k , ) ( I j l , k I I j l , , k ’ )  = i NG,,8dk8k.k, + N8k,k, a, , , (k)  (43) 

a, , , (k)  = (Ijlnkli d k v j n ’ k ) ,  (44) 

where 

having made use of (37b), (38) and (32). We may evaluate (44) from the Schrodinger 
equation (1) for I),&) in the internal (0, a) by performing the operation a k  and taking 
its projection onto I j lnk(x).  We find, by integration by parts 

(Erik - & n , k ) ( I j l , k l ~ k V d k )  

= (1/NP,,,ak&,k +i(aW,,,(k,a)+R,,,,(k, a)-R,,,(k,O)) (45) 

(46) 

a , , , ( k ) =  - ( a w , , , ( k , a ) + R , , , ( k , a ) - R , , , ( k , O > ) / ( & , k  - E , % ) .  (47) 

where W,,,(k,  x )  is given as before by (16) and 

R, , , (k ,  x )  = (-i /2m>(~,*~(x)d/ax - d ~ , * ~ ( x ) / a x  + 2  i k ~ , * ~ ( x ) ) a ~ u , , ~ ( x ) .  

We thus have for n’ # n 

Thus, for the finite crystal, in addition to the Wronskian W,,,(k,  a) we discussed above 
in connection with the infinite crystal, there is the difference in the values of R,,,(k, x )  
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at the edges of the unit cell, due to the non-periodicity of akuntk(x) we noted in connection 
with (42). For the case of the infinite crystal a,u,,(x) becomes d u n k ( x ) / d k  and its 
periodicity makes the contribution of R,,,(k, x )  in (47) vanish, thus re-establishing the 
earlier result. We thus conclude that for the general case for a finite crystal we have 
a,,,(k) f 07 

3. Discussion 

We discuss here the various arguments that have been presented recently in the literature 
claiming to show, contrary to our findings, that the stair-function has no interband matrix 
elements, i.e. u,,,(k) = 0. 

It has been argued in [9] that the replacement of x by S(x) in an infinite crystal 
amounts to a one-band approximation. Specifically, it was recalled that the matrix 
elements of x in the Bloch representation [19] 

(nklxln'k') = i a,,, (a /dk)b(k  - k ' )  + 6 ( k  - k')X,,,(k) (48) 

where X,, , (k)  are given by (sa) ,  are such that if one ignores the interband elements 
X,,.(k) the energy spectrum of the electron is [15,9] 

E,, = eEav + ( E , ~  + eEX,,(k)) v = 0, 21 ,  i 2 , .  . . (49) 

where ( ) denotes the average over the band. Thus, in this one-band approximation, 
there is an energy Stark ladder associated with each band n.  It was then concluded [9] 
that this approximation (i.e. X,,,(k) = 0) is equivalent to Schrodinger's equation in 
which the electric field potential is replaced by the stair-function eES(x). The basis for 
this conclusion ispresumably (no detailed argument was given) the fact that the spectrum 
of eES(x) is eEav (v = 0 ,  k l ,  2 2 , .  . .). But, this spectrum is not the same as in (49), 
since (49) is a Stark ladder for each band. It seems to us that one may not conclude on 
the basis of this argument that a stair-function potential eES(x) on a crystal is equivalent 
to an electric field potential eEx in a one-band approximation. 

In a more quantitative argument, it was pointed out [9] that u,,,(k) = 0 (n' # n )  for 
the case of ultralocalised Wannier functions, i.e. for the periodic potential (21), as we 
noted earlier. It was then stated that a similar result is expected for any set of well- 
localised Wannier functions. It was finally concluded that S(x)  has vanishing interband 
matrix elements (at least for a tight-binding model). We have shown above, however, 
that the vanishing of a,,.(k) for the potential (21) is not typical, and, in fact, even for the 
same potential a,,.(k) # 0 if the unit cell is chosen differently. 

Furthermore, it was argued in [9] that a stair-function with a step equal to a sub- 
multiple of the period a ,  ( a / v ) ,  is again equivalent to a one-band approximation. We 
have shown, however, that in such a case the interband elements a$),(k),  (28), are 
different from o,, ,(k) in general, and as v + x. such a stair-function approaches the 
operator x ,  as it should. 

We finally conclude that although S(x) and x are different operators, they are quite 
similar in that they both have non-vanishing interband matrix elements and similar 
intraband elements. In fact, as the steps of S(x)  become smaller the effects of S(x)  
approach those of x .  
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Another argument has been published recently [5] that claims to show that ann,(k) = 
0 for an arbitrary band structure and for afinite crystal (0, Nu).  In [5] expression (44) for 
a,,,(k) is written in the form 

a, , , (k)  = - (U,kIXIUnd + (Unkli akun,k>, (50) 

with the use of (37b) and (39). The two terms in (50) are then compared by evaluating 
(nklxln’k) in two different ways. First, by a cell-by-cell integration one finds 

m=O J m a  

with the use of (32). Secondly, one attempts to evaluate (nklxln’k’) by noting, as in the 
standard way [ 191 for the infinite crystal, that 

Then, according to [5], the second term in (53) equals Nbk.kt (unk/i dku,,,J and thus, 
evaluating (53) fork’ = k and comparing it with (51), one concludes that expression (50) 
gives a,,,(k) = 0. However, as we pointed out earlier in connection with equation (42), 
ak8u,,k,(x) is not periodic in x with period a and the claimed reduction of the second term 
in (53) is not correct, and the argument of [5] that u,,,(k) = 0 is invalid. 

It is worth noting that the work of [5] has been criticised by others [l] as well. It was 
stated [ l ]  that the error made in [5] lies in equation (40), which is used in [5] for the 
evaluation of 8nndkdk ,kn  for k‘ = k. It is asserted in [ l ]  that equation (40) is incorrect. 
We believe that this remark is erroneous, since equation (40) is perfectly valid for a finite 
crystal, as was shown above. The Wannierfunctions centered near the edge of the system 
are orthogonal to the bulk Wannier functions, because they are periodic functions of x 
with period Nu. 

Most recently, after this study had been completed, the work of [5] was criticized in 
a comment [ l l ] ,  by pointing to a paradox that the work of [5], if correct, would result 
in. It was demonstrated there that the stair-function S(x) must have non-vanishing 
interband matrix elements. The demonstration was based on the direct evaluation of 
(nklSln’k’) given by the second expression in (33) for a finite crystal. In our work, as in 
all other works under criticism here, we have considered the equivalent expression for 
(nklSln’k’) obtained by ‘an integration by parts’, namely the second expression in (43) 
and the last expression in (7), for a finite and an infinite crystal, respectively. This has 
allowed us to pinpoint precisely the flaws in the earlier studies, and at the same time give 
explicit expressions for the interband elements. 

The study of the time-dependent problem in [4] is also in error, as it is based on the 
work reported in [5], which has just been shown to be invalid. 

In a very recent publication [2] a yet different argument was presented carefully for 
a finite crystal, which claimed to show indirectly that a,, ,(k) = Ofor the bands determined 
by the sawtooth-function of the electric field potential. We have, however, shown 
elsewhere [20] that the argument is in error for reasons similar to the ones associated 
with (50)-(53). 
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An argument based on the kq-representation has also been reported [3] to show that 
an electric field potential has no interband matrix elements for the bands determined by 
the periodic sawtooth-function of the potential, i.e. ann8(k) = 0 for such bands. This 
argument [3], is, however, again wrong. In order to obtain the secular equation (20) in 
ref. [3], which demonstrates this claim, the author [3] must use an orthonormality 
relation for the Wannier functions namely 

This, however, is not valid, as only equation (40) is correct for the Wannier functions 
for the case of a finite crystal under consideration. In fact, if one tries to solve the 
Schrodinger equation for an electron in a periodic potential V(x)  and an electric field E 
in the kq-representation [3], namely 

[-(1/2m)a2/aq2 + V(q)  + eEq + e E i  a/dk]C(k ,  q )  = &C(k, q )  

by expanding 

C ( k ,  4 )  = 2 Ankqnk(q) 
n 

in terms of the electric-field-dependent Bloch functions qnk(q) determined by 

[-(1/2m>a2/aq2 + v(q) + eEqlqnk(q) = &nkqnk(q) 

and the appropriate boundary conditions for 0 < q < a ,  one finds easily 

with 

for the infinite crystal. For the finite crystal one replaces d / d k  by dk ,  as defined before, 
and the normalization factor ( 2 n / a )  by N .  Thus, the interband matrix element in (57), 
which must be those of the stair-function potential, since the periodic sawtooth-function 
potential has been taken into account, are indeed identical to (8a) and (44), for the 
infinite and the finite crystal, respectively. 

We comment now on an argument that is reported [ l ]  to show that for the case of 
two (n ,  n ' )  bands ann,(k) # Oquite generally. It isargued [l] that, since (qJnk1qnfk) CC d,,,, 
q n k  and q n ' k  can be viewed as two perpendicular vectors in a two-dimensional space lying 
on aunit circle, and thus (akqnrk) must be parallel to (qnk), i.e. a,,,(k) (qnkIak?)n,k) Z 
0. However, we believe this argument is not complete, since the only conclusion we 
may draw from (qnk/ q n 8 k )  cc dnnt is that (ak?#flk/ q n ' k )  + (qnk/dkqn,k) = 0, which does not 
entail the reported conclusion. 

Finally, it is tempting to consider a different argument that seems to show that 
ann,(k) = 0 quite generally. For the case of the infinite crystal, we propose to evaluate 
the matrix elements of the commutator [ H ( k ) ,  x] in (14), not by integration by parts as 
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we did before, but by inserting a complete set of states between H ( k )  and x .  Since we 
are restricted to the unit cell (0, a)  we may take as usual for functions within (0, a)  

( 2 4 4  2 U,k(x)u;&’) = 6(x - x ’ )  
n 

(59) 

and find from (14), (lo), (9b) and ( 5 )  

( l / ~ > ( p n n W  + k6nd) = i(Enk - En’k)Xnn,(k) (60) 

in contradiction to (15). Comparing now (12) and (60) we find that Xnnr(x)  = xnnJ(k)  for 
n # n’ and thus from (8b) we have in general ann,(k) = 0. But clearly this procedure is 
wrong; the set {unk(x)} for all n is not a complete set for the function x within (0, a). If it 
was and (60) was correct, it would follow from (60) that (Pnn(k) + k ) / m  = 0, whereas 
from (11) with n’ = n we get by differentiation with respect to k the well-known relation 

(2nla)(unk laWk)/aklunk) = ( p n n ( k )  + k ) / m  = (41) 

In fact, we can prove that, if ann8(k) = 0 for n’ # n and we may use the completeness 
relation (59), then 

m d 2 E n k l d k 2  = 1 + (2~ /a>[ (aunk /~k lP /~nk)  + ( ~ n k / P l % k / d k ) l  

= 1 + 2 (Pnn@)%l(k)  - x n n & ) P n , n W  
n ’ f n  

an obvious contraciction to the statement that a,,,(k) = 0 quite generally. 
In view of these findings, it is clear that the calculation of the Zener tunnelling should 

not be based on the splitting of the electric field potential eEx into the sawtooth-function 
and the stair-function parts, since both have interband matrix elements. It is instead 
advantageous to base such a calculation on the interband elementsX,,,(k), given in (48) 
and (9a),  as indeed has been done in [14] and [15]. However, in these theories there are 
unsatisfactory features. For example, the interband elements are treated by perturbation 
theory, and the Zener current is calculated in the quasi-classical approximation. In 
addition the effects of collisions have not been considered. It is of basic interest to 
examine whether or under what conditions the X,,,,, can be treated as small, and how the 
Stark ladders, sharply defined when Xnn, are neglected, are modified by their presence 
and how they affect the Zener current. We hope to address these points elsewhere. 
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